
NAG C Library Function Document

nag_opt_estimate_deriv (e04xac)

1 Purpose

nag_opt_estimate_deriv (e04xac) computes an approximation to the gradient vector and/or the Hessian
matrix for use in conjunction with, or following the use of an optimization function (such as nag_opt_nlp
(e04ucc)).

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_estimate_deriv (Integer n, const double x[],

void (*objfun)(Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm),

double *objf, double g[], double h_forward[], double h_central[], double h[],
Integer tdh, Nag_DerivInfo *deriv_info, Nag_E04_Opt *options, Nag_Comm *comm,
NagError *fail)

3 Description

nag_opt_estimate_deriv (e04xac) is based on the routine FDCALC described in Gill et al. (1983a). It
computes finite-difference approximations to the gradient vector and the Hessian matrix for a given
function, and aims to provide sufficiently accurate estimates for use with an optimization algorithm.

The simplest approximation of the gradients involves the forward-difference formula, in which the
derivative of f 0 xð Þ of a univariate function f xð Þ is approximated by the quantity

�F f ; hð Þ ¼ f xþ hð Þ � f xð Þ
h

for some interval h > 0, where the subscript ‘F’ denotes ‘forward-difference’ (see Gill et al. (1983b)).

The choice of which gradients are returned by nag_opt_estimate_deriv (e04xac) is controlled by the
optional parameter deriv_want (see Section 10 for a description of this parameter). To summarize the
procedure used by nag_opt_estimate_deriv (e04xac) when deriv_want ¼ Nag_Grad_HessFull (default
value) (i.e., for the case when the objective function is available and the user requires estimates of gradient
values and the full Hessian matrix) consider a univariate function f at the point x. (In order to obtain the
gradient of a multivariate function F xð Þ, where x is an n-vector, the procedure is applied to each
component of x, keeping the other components fixed.) Roughly speaking, the method is based on the fact
that the bound on the relative truncation error in the forward-difference approximation tends to be an
increasing function of h, while the relative condition error bound is generally a decreasing function of h,
hence changes in h will tend to have opposite effects on these errors (see Gill et al. (1983b)).

The ‘best’ interval h is given by

hF ¼ 2

ffi
1þ f xð Þj jð ÞeR

�j j

s
ð1Þ

where � is an estimate of f 00 xð Þ, and eR is an estimate of the relative error associated with computing the
function (see Chapter 8 of Gill et al. (1981)). Given an interval h, � is defined by the second-order
approximation

� ¼ f xþ hð Þ � 2f xð Þ þ f x� hð Þ
h2

.

The decision as to whether a given value of � is acceptable involves ĉ �ð Þ, the following bound on the

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.1

relative condition error in �:

ĉ �ð Þ ¼ 4eR 1þ fj jð Þ
h2 �j j

(When � is zero, ĉ �ð Þ is taken as an arbitrary large number.)

The procedure selects the interval h� (to be used in computing �) from a sequence of trial intervals hkð Þ.
The initial trial interval is taken as

�h ¼ 2 1þ xj jð Þ ffiffiffiffiffi
eR4

p
.

unless the user specifies the initial value to be used.

The value of ĉ �ð Þ for a trial value hk is defined as ‘acceptable’ if it lies in the interval 0:0001; 0:01½ �. In
this case h� is taken as hk , and the current value of � is used to compute hF from (1). If ĉ �ð Þ is
unacceptable, the next trial interval is chosen so that the relative condition error bound will either decrease
or increase, as required. If the bound on the relative condition error is too large, a larger interval is used as
the next trial value in an attempt to reduce the condition error bound. On the other hand, if the relative
condition error bound is too small, hk is reduced.

The procedure will fail to produce an acceptable value of ĉ �ð Þ in two situations. Firstly, if f 00 xð Þ is
extremely small, then ĉ �ð Þ may never become small, even for a very large value of the interval.
Alternatively, ĉ �ð Þ may never exceed 0.0001, even for a very small value of the interval. This usually
implies that f 00 xð Þ is extremely large, and occurs most often near a singularity.

As a check on the validity of the estimated first derivative, the procedure provides a comparison of the
forward-difference approximation computed with hF (as above) and the central-difference approximation
computed with h�. Using the central-difference formula the first derivative can be approximated by

�c f ; hð Þ ¼ f xþ hð Þ � f x� hð Þ
2h

where h > 0. If the values hF and h� do not display some agreement, neither can be considered reliable.

The approximate Hessian matrix G is defined as in Chapter 2 of Gill et al. (1981), by

Gij xð Þ ¼ 1

hihj
f xþ hiei þ hjej
� �

� f xþ hieið Þ � f xþ hjej
� �

þ f xð Þ
� �

.

where hj is the best forward-difference interval associated with the jth component of f and ej is the vector
with unity in the jth position and zeros elsewhere.

If the user requires the gradients and only the diagonal of the Hessian matrix (i.e.,
deriv_want ¼ Nag_Grad_HessDiag; see Section 10.2), nag_opt_estimate_deriv (e04xac) follows a
similar procedure to the default case, except that the initial trial interval is taken as 10�h, where

�h ¼ 2 1þ xj jð Þ ffiffiffiffiffi
eR

p

and the value of ĉ �ð Þ for a trial value hk is defined as acceptable if it lies in the interval 0:001; 0:1½ �. The
elements of the Hessian diagonal which are returned in this case are the values of � corresponding to the
‘best’ intervals.

When both function and gradients are available and the user requires the Hessian matrix (i.e.,
deriv_want ¼ Nag_HessFull; see Section 10.2), nag_opt_estimate_deriv (e04xac) follows a similar
procedure to the case above with the exception that the gradient function g xð Þ is substituted for the
objective function and so the forward-difference interval for the first derivative of g xð Þ with respect to
variable xj is computed. The jth column of the approximate Hessian matrix is then defined as in Chapter 2
of Gill et al. (1981), by

g xþ hjej
� �

� g xð Þ
hj

where hj is the best forward-difference interval associated with the jth component of g.

e04xac NAG C Library Manual

e04xac.2 [NP3660/8]

4 References

Gill P E, Murray W, Saunders M A and Wright M H (1983a) Documentation for FDCALC and FDCORE
Technical Report SOL 83–6 Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1983b) Computing forward-difference intervals for
numerical optimization SIAM J. Sci. Statist. Comput. 4 310–321

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Arguments

1: n – Integer Input

On entry: the number n of variables.

Constraint: n � 1.

2: x½n� – const double Input

On entry: the point x at which derivatives are required.

3: objfun – function, supplied by the user External Function

objfun must evaluate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F

@xj
for a

specified n element vector x.

Its specification is:

void objfun (Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm)

1: n – Integer Input

On entry: the number n of variables.

2: x½n� – const double Input

On entry: the point x at which the value of F and, if comm ! flag ¼ 2, the
@F

@xj
, are

required.

3: objf – double * Output

On exit: objfun must set objf to the value of the objective function F at the current point
x. If it is not possible to evaluate F then objfun should assign a negative value to
comm ! flag; nag_opt_estimate_deriv (e04xac) will then terminate.

4: g½n� – double Output

On exit: if comm ! flag ¼ 2 on entry, then objfun must set g½j� 1� to the value of the

first derivative
@F

@xj
at the current point x, for j ¼ 1; 2; . . . ; n. If it is not possible to

evaluate the first derivatives then objfun should assign a negative value to comm ! flag;
nag_opt_estimate_deriv (e04xac) will then terminate.

If comm ! flag ¼ 0 on entry, then g is not referenced.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.3

flag – Integer Input/Output

On entry: comm ! flag will be set to 0 or 2. The value 0 indicates that only F
itself needs to be evaluated. The value 2 indicates that both F and its first
derivatives must be calculated.

On exit: if objfun resets comm ! flag to a negative number then
nag_opt_estimate_deriv (e04xac) will terminate immediately with the error indicator
NE_USER_STOP. If fail is supplied to nag_opt_estimate_deriv (e04xac),
fail.errnum will be set to the user’s setting of comm ! flag.

first – Nag_Boolean Input

On entry: will be set to Nag_True on the first call to objfun and Nag_False for all
subsequent calls.

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be
equal to the number of calls made to objfun (including the current one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char *
otherwise.

Before calling nag_opt_estimate_deriv (e04xac) these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun when
called from nag_opt_estimate_deriv (e04xac).

Note: objfun should be thoroughly tested before being used in conjunction with nag_opt_estimate_deriv
(e04xac). The array x must not be changed by objfun.

4: objf – double * Output

On exit: the value of the objective function evaluated at the input vector in x.

5: g½n� – double Output

On exit: if deriv_want ¼ Nag_Grad_HessFull (the default; see Section 10.2) or
deriv_want ¼ Nag_Grad_HessDiag, g½j� 1� contains the best estimate of the first partial
derivative for the jth variable, j ¼ 1; 2; . . . ; n. If deriv_want ¼ Nag_HessFull, g½j� 1� contains
the first partial derivative for the jth variable as evaluated by objfun.

6: h_forward½n� – double Input/Output

On entry: if the optional parameter use_hfwd_init ¼ NagFalse (the default; see Section 10.2), the
values contained in h_forward on entry to nag_opt_estimate_deriv (e04xac) are ignored.

If use_hfwd_init ¼ NagTrue, h_forward is assumed to contain meaningful values on entry: if
h_forward½j� 1� > 0 then it is used as the initial trial interval for computing the appropriate partial
derivative to the jth variable, j ¼ 1; 2; . . . ; n; if h_forward½j� 1� � 0:0, then the initial trial interval
for the jth variable is computed by nag_opt_estimate_deriv (e04xac) (see Section 10.2).

On exit: h_forward½j� 1� is the best interval found for computing a forward-difference
approximation to the appropriate partial derivative for the jth variable. If the user does not
require this information, a NULL pointer may be provided, and nag_opt_estimate_deriv (e04xac)
will allocate memory internally to calculate the difference intervals.

Constraint: h_forward must not be NULL if use_hfwd_init ¼ NagTrue

e04xac NAG C Library Manual

e04xac.4 [NP3660/8]

7: h_central½n� – double Output

On exit: h_central½j� 1� is the best interval found for computing a central-difference approximation
to the appropriate partial derivative for the jth variable. If the user does not require this information,
a NULL pointer may be provided, and nag_opt_estimate_deriv (e04xac) will allocate memory
internally to calculate the difference intervals.

8: h½n� tdh� – double Output

On exit: if the optional parameter deriv_want ¼ Nag_Grad_HessFull (the default; see
Section 10.2) or deriv_want ¼ Nag_HessFull, the estimated Hessian matrix is contained in the
leading n by n part of this array. If deriv_want ¼ Nag_Grad_HessDiag, the n elements of the
estimated Hessian diagonal are contained in the first row of this array.

9: tdh – Integer Input

On entry: the second dimension of the array h as declared in the function from which
nag_opt_estimate_deriv (e04xac) is called.

Constraint: tdh � n.

10: deriv_info½n� – Nag_DerivInfo * Output

On exit: deriv_info½j� 1� contains diagnostic information on the jth variable, for j ¼ 1; 2; . . . ; n.

deriv_info½j� 1� ¼ Nag_Deriv_OK

No unusual behaviour observed in estimating the appropriate derivative.

deriv_info½j� 1� ¼ Nag_Fun_Constant

The appropriate function appears to be constant.

deriv_info½j� 1� ¼ Nag_Fun_LinearOdd

The appropriate function appears to be linear or odd.

deriv_info½j� 1� ¼ Nag_2ndDeriv_Large

The second derivative of the appropriate function appears to be so large that it cannot be
reliably estimated (e.g., near a singularity).

deriv_info½j� 1� ¼ Nag_1stDeriv_Small

The forward-difference and central-difference estimates of the appropriate first derivatives do
not agree to half a decimal place; this usually occurs because the first derivative is small.

A more detailed explanation of these warnings is given in Section 8.1.

11: options – Nag_E04_Opt * Input/Output

On entry/on exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_estimate_deriv (e04xac). These structure members offer the means of
adjusting some of the parameter values of the computation and on output will supply further details
of the results. A description of the members of options is given below in Section 10.

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_estimate_deriv
(e04xac). However, if the optional parameters are not required the NAG defined null pointer,
E04_DEFAULT, can be used in the function call.

12: comm – Nag_Comm * Input/Output

On entry/on exit: structure containing pointers for communication with user-supplied functions; see
the above description of objfun for details. If the user does not need to make use of this
communication feature, the null pointer NAGCOMM_NULL may be used in the call to
nag_opt_estimate_deriv (e04xac); comm will then be declared internally for use in calls to user-
supplied functions.

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.5

13: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

5.1 Description of Printed Output

Results from nag_opt_estimate_deriv (e04xac) are printed out by default. The level of printed output can
be controlled by the user with the structure members list and print_deriv (see Section 10.2). If
list ¼ NagTrue then the parameter values to nag_opt_estimate_deriv (e04xac) are listed, whereas printout
of results is governed by the value of print_deriv.

The default, print_deriv ¼ Nag_D_Print provides the following line of output for each variable.

j the index of the variable for which the difference interval has been computed.

X(j) the value of xj as provided by the user in x½j� 1�.

Fwd diff int the best interval found for computing a forward-difference approximation to the
appropriate partial derivative with respect to xj.

Cent diff int the best interval found for computing a central-difference approximation to the
appropriate partial derivative with respect to xj.

Error est a bound on the estimated error in the final forward-difference approximation. When
deriv_info½j� 1� ¼ NagFunConstant, Error est is set to zero.

Grad est best estimate of the first partial derivative with respect to xj.

Hess diag est best estimate of the second partial derivative with respect to xj.

Nfun the number of function evaluations used to compute the final difference intervals for xj.

Info gives diagnostic information for xj. Info will be one of OK, Constant?, Linear or

odd?, Large 2nd deriv?, or Small 1st deriv?, corresponding to
deriv_info½j� 1� ¼ NagDerivOK, Nag_Fun_Constant, Nag_Fun_LinearOdd,
Nag_2ndDeriv_Large or Nag_1stDeriv_Small, respectively.

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tdh ¼ valueh i while n ¼ valueh i. These parameters must satisfy tdh � n.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, parameter print_deriv had an illegal value.

NE_H_FORWARD_NULL

use_hfwd_init ¼ NagTrue but argument h_forward is NULL.

NE_INT_ARG_LT

On entry, n must not be less than 1: n ¼ valueh i.

NE_INVALID_REAL_RANGE_F

Value valueh i given to f_prec is not valid. Correct range is f_prec > 0:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

e04xac NAG C Library Manual

e04xac.6 [NP3660/8]

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if the user sets comm ! flag to a negative value in objfun. If fail is supplied, the
value of fail.errnum will be the same as the user’s setting of comm ! flag.

NW_DERIV_INFO

On exit, at least one element of the deriv_info array does not contain the value
deriv_info ¼ Nag_Deriv_OK. This does not necessarily represent an unsuccessful exit.

See Section 8.1 for information about the possible values which may be returned in deriv_info.

7 Accuracy

nag_opt_estimate_deriv (e04xac) exits with fail.code ¼ NE_NOERROR if the algorithm terminated
successfully, i.e., the forward-difference estimates of the appropriate first derivatives (computed with the
final estimate of the ‘optimal’ forward-difference interval hF) and the central-difference estimates
(computed with the interval h� used to compute the final estimate of the second derivative) agree to at least
half a decimal place.

8 Further Comments

8.1 Diagnostic Information

Diagnostic information is returned via the array parameter deriv_info. If fail.code ¼ NE_NOERROR on
exit then deriv_info½j� 1� ¼ NagDerivOK, for j ¼ 1; 2; . . . ; n. If fail.code ¼ NW_DERIV_INFO on
exit, then, for at least one j, deriv_info½j� 1� contains one of the following values:

Nag_Fun_Constant

The appropriate function appears to be constant. On exit, h_forward½j� 1� is set to the initial trial
interval corresponding to a well scaled problem, and Error est in the printed output is set to zero.
This value occurs when the estimated relative condition error in the first derivative approximation is
unacceptably large for every value of the finite-difference interval. If this happens when the
function is not constant the initial interval may be too small; in this case, it may be worthwhile to
rerun nag_opt_estimate_deriv (e04xac) with larger initial trial interval values supplied in h_forward
and with the optional parameter use_hfwd_init set to Nag_True. This error may also occur if the
function evaluation includes an inordinately large constant term or if optional parameter f_prec is
too large.

Nag_Fun_LinearOdd

The appropriate function appears to be linear or odd. On exit, h_forward½j� 1� is set to the
smallest interval with acceptable bounds on the relative condition error in the forward- and
backward-difference estimates. In this case, the estimated relative condition error in the second
derivative approximation remained large for every trial interval, but the estimated error in the first
derivative approximation was acceptable for at least one interval. If the function is not linear or odd
the relative condition error in the second derivative may be decreasing very slowly. It may be
worthwhile to rerun nag_opt_estimate_deriv (e04xac) with larger initial trial interval values supplied
in h_forward and with use_hfwd_init set to Nag_True.

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.7

Nag_2ndDeriv_Large

The second derivative of the appropriate function appears to be so large that it cannot be reliably
estimated (e.g., near a singularity). On exit, h_forward½j� 1� is set to the smallest trial interval.

This value occurs when the relative condition error estimate in the second derivative remained very
small for every trial interval.

If the second derivative is not large the relative condition error in the second derivative may be
increasing very slowly. It may be worthwhile to rerun nag_opt_estimate_deriv (e04xac) with
smaller initial trial interval values supplied in h_forward and with use_hfwd_init set to Nag_True.
This error may also occur when the given value of the optional parameter f_prec is not a good
estimate of a bound on the absolute error in the appropriate function (i.e., f_prec is too small).

Nag_1stDeriv_Small

The algorithm terminated with an apparently acceptable estimate of the second derivative. However
the forward-difference estimates of the appropriate first derivatives (computed with the final estimate
of the ‘optimal’ forward-difference interval) and the central difference estimates (computed with the
interval used to compute the final estimate of the second derivative) do not agree to half a decimal
place. The usual reason that the forward- and central-difference estimates fail to agree is that the
first derivative is small.

If the first derivative is not small, it may be helpful to run nag_opt_estimate_deriv (e04xac) at a
different point.

8.2 Timing

Unless the objective function can be evaluated very quickly, the run time will usually be dominated by the
time spent in objfun.

To evaluate an acceptable set of finite-difference intervals for a well-scaled problem
nag_opt_estimate_deriv (e04xac) will use around two function evaluations per variable; in a badly scaled
problem, six function evaluations per variable may be needed.

In the default case where gradients and the full Hessian matrix are required (i.e., optional parameter
deriv_want ¼ Nag_Grad_HessFull), nag_opt_estimate_deriv (e04xac) performs a further 3n nþ 1ð Þ=2
function evaluations. If the full Hessian matrix is required, with the user supplying both function and
gradients (i.e., deriv_want ¼ Nag_HessFull), a further n function evaluations are performed.

9 Example

There is one example program file, the main program of which calls both examples EX1 and EX2.
Example 1 (EX1) shows the simple use of nag_opt_estimate_deriv (e04xac) where default values are used
for all optional parameters. An example showing the use of optional parameters is given in EX2 and is
described in Section 11.

Example 1 (EX1)

Compute the gradient vector and Hessian matrix of the following function:

F xð Þ ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

at the point 3;�1; 0; 1ð ÞT.

9.1 Program Text

/* nag_opt_estimate_deriv (e04xac) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

e04xac NAG C Library Manual

e04xac.8 [NP3660/8]

#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <nage04.h>

static int ex1(void);
static int ex2(void);
#ifdef __cplusplus
extern "C" {
#endif

static void objfun(Integer n, double x[], double *objf,
double g[], Nag_Comm *comm);

#ifdef __cplusplus
}
#endif
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm)
{

double a, asq, b, bsq, c, csq, d, dsq;

a = x[0] + 10.0*x[1];
b = x[2] - x[3];
c = x[1] - 2.0*x[2];
d = x[0] - x[3];
asq = a*a;
bsq = b*b;
csq = c*c;
dsq = d*d;
*objf = asq + 5.0*bsq + csq*csq + 10.0*dsq*dsq;
if (comm->flag == 2)

{
g[0] = 2.0*a + 40.0*d*dsq;
g[1] = 20.0*a + 4.0*c*csq;
g[2] = 10.0*b - 8.0*c*csq;
g[3] = -10.0*b - 40.0*d*dsq;

}
}
/* objfun */

int main(void)
{

Integer exit_status_ex1=0;
Integer exit_status_ex2=0;

Vprintf("nag_opt_estimate_deriv (e04xac) Example Program Results\n");

exit_status_ex1 = ex1();
exit_status_ex2 = ex2();

return exit_status_ex1 == 0 && exit_status_ex2 == 0 ? 0 : 1;
}
#define H(I,J) h[(I)*tdh + J]

static int ex1(void)
{
#define MAXN 4

/* Local variables */
Integer exit_status=0, n, tdh;
NagError fail;
Nag_DerivInfo *deriv_info=0;
double *g=0, *h=0, objf, *x=0;

INIT_FAIL(fail);

n = MAXN;
if (n>=1)

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.9

{
if (!(x = NAG_ALLOC(n, double)) ||

!(g = NAG_ALLOC(n, double)) ||
!(h = NAG_ALLOC(n*n, double)) ||
!(deriv_info = NAG_ALLOC(n, Nag_DerivInfo))
)

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdh = n;

}
else

{
Vprintf("Invalid n.\n");
exit_status = 1;
return exit_status;

}
Vprintf("\nExample 1: default options\n");

x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;

/* Pass null pointers for the h_central and h_forward parameters
* as we do not need these values.
*/

/* nag_opt_estimate_deriv (e04xac).
* Computes an approximation to the gradient vector and/or
* the Hessian matrix for use with nag_opt_nlp (e04ucc) and
* other nonlinear optimization functions
*/

nag_opt_estimate_deriv(n, x, objfun, &objf, g, (double*)0, (double*)0,
h, tdh, deriv_info, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_estimate_deriv (e04xac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
END:
if (x) NAG_FREE(x);
if (g) NAG_FREE(g);
if (h) NAG_FREE(h);
if (deriv_info) NAG_FREE(deriv_info);
return exit_status;

} /* ex1 */

static int ex2(void)
{

/* Local variables */
Integer exit_status=0, i, j, n, tdh;
double *g=0, *h=0, *h_central=0, *h_forward=0, *hess_diag=0, objf, *x=0;

Nag_DerivInfo *deriv_info=0;
Nag_E04_Opt options;
NagError fail;

INIT_FAIL(fail);

n = MAXN;

if (n>=1)
{

if (!(x = NAG_ALLOC(n, double)) ||

e04xac NAG C Library Manual

e04xac.10 [NP3660/8]

!(h_central = NAG_ALLOC(n, double)) ||
!(h_forward = NAG_ALLOC(n, double)) ||
!(g = NAG_ALLOC(n, double)) ||
!(h = NAG_ALLOC(n*n, double)) ||
!(hess_diag = NAG_ALLOC(n, double)) ||
!(deriv_info = NAG_ALLOC(n, Nag_DerivInfo))
)

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdh = n;

}
else

{
Vprintf("Invalid n.\n");
exit_status = 1;
return exit_status;

}

x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;

Vprintf("\nExample 2: some options are set\n");

/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
options.list = Nag_FALSE;
options.print_deriv = Nag_D_NoPrint;
options.deriv_want = Nag_Grad_HessDiag;

Vprintf("\nEstimate gradient and Hessian diagonals given function only\n");

/* Note: it is acceptable to pass an array of length n (hess_diag)
* as the Hessian parameter in this case.
*/

/* nag_opt_estimate_deriv (e04xac), see above. */
nag_opt_estimate_deriv(n, x, objfun, &objf, g, h_forward, h_central,

hess_diag, tdh, deriv_info, &options, NAGCOMM_NULL,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_estimate_deriv (e04xac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf("\nFunction value: %12.4e\n", objf);
Vprintf("Estimated gradient vector\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", g[i]);
Vprintf("\nEstimated Hessian matrix diagonal\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", hess_diag[i]);
Vprintf("\n");

options.deriv_want = Nag_HessFull;

Vprintf("\nEstimate full Hessian given function and gradients\n");
/* nag_opt_estimate_deriv (e04xac), see above. */
nag_opt_estimate_deriv(n, x, objfun, &objf, g, h_forward, h_central,

h, tdh, deriv_info, &options, NAGCOMM_NULL, &fail);

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.11

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_estimate_deriv (e04xac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf("\nFunction value: %12.4e\n", objf);
Vprintf("Computed gradient vector\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", g[i]);
Vprintf("\nEstimated Hessian matrix\n");
for (i = 0; i < n; ++i)

{
for (j = 0; j < n; ++j)

Vprintf("%12.4e ", H(i,j));
Vprintf("\n");

}
END:
if (x) NAG_FREE(x);
if (h_central) NAG_FREE(h_central);
if (h_forward) NAG_FREE(h_forward);
if (g) NAG_FREE(g);
if (h) NAG_FREE(h);
if (hess_diag) NAG_FREE(hess_diag);
if (deriv_info) NAG_FREE(deriv_info);
return exit_status;

} /* ex2 */

9.2 Program Data

None.

9.3 Program Results

nag_opt_estimate_deriv (e04xac) Example Program Results

Example 1: default options

Parameters to e04xac

deriv_want...... Nag_Grad_HessFull use_hfwd_init........... Nag_FALSE
f_prec.................. 4.38e-15 machine precision....... 1.11e-16
print_deriv........... Nag_D_Print
outfile................. stdout

j X(j) Fwd diff int Cent diff int Error est Grad est Hess diag
est Nfun Info

1 3.00e+00 8.858467e-08 4.150140e-06 4.269784e-05 3.060000e+02
4.820003e+02 6 OK

2 -1.00e+00 1.335700e-07 2.075070e-06 2.199629e-04 -1.440000e+02
2.120053e+02 4 OK

3 0.00e+00 2.554134e-07 1.037535e-06 3.007806e-05 -2.000000e+00
5.797983e+01 4 OK

4 1.00e+00 8.785827e-08 2.075070e-06 5.083958e-04 -3.100000e+02
4.900035e+02 4 OK

Example 2: some options are set

Estimate gradient and Hessian diagonals given function only

Function value: 2.1500e+02
Estimated gradient vector

3.0600e+02 -1.4400e+02 -2.0000e+00 -3.1000e+02
Estimated Hessian matrix diagonal

4.8200e+02 2.1200e+02 5.8009e+01 4.9001e+02

e04xac NAG C Library Manual

e04xac.12 [NP3660/8]

Estimate full Hessian given function and gradients

Function value: 2.1500e+02
Computed gradient vector

3.0600e+02 -1.4400e+02 -2.0000e+00 -3.1000e+02
Estimated Hessian matrix

4.8200e+02 2.0000e+01 0.0000e+00 -4.8000e+02
2.0000e+01 2.1200e+02 -2.4000e+01 0.0000e+00
0.0000e+00 -2.4000e+01 5.8000e+01 -1.0000e+01

-4.8000e+02 0.0000e+00 -1.0000e+01 4.9000e+02

10 Optional Parameters

A number of optional input and output parameters to nag_opt_estimate_deriv (e04xac) are available
through the structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning
an appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_estimate_deriv (e04xac); the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case
initialization of the options structure will be performed automatically if not already done. Any subsequent
direct assignment to the options structure must not be preceded by initialization.

10.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag_opt_estimate_deriv (e04xac) together with their default values where relevant. The number � is a
generic notation for machine precision (see nag_machine_precision (X02AJC)).

Boolean list Nag_True
Nag_DPrintType print_deriv Nag_D_Print
char outfile[80] stdout
Nag_DWantType deriv_want Nag_Grad_HessFull
Boolean use_hfwd_init Nag_False
double f_prec �0:9

double f_prec_used
Integer nf

10.2 Description of the Optional Arguments

list – Nag_Boolean Default ¼ NagTrue

On entry: if list ¼ NagTrue the parameter settings in the call to nag_opt_estimate_deriv (e04xac) will be
printed.

print_deriv – Nag_DPrintType Default ¼ Nag_D_Print

On entry: controls whether printout is produced by nag_opt_estimate_deriv (e04xac). The following
values are available:

Nag_D_NoPrint No output.

Nag_D_Print Printout for each variable as described in Section 5.

Constraint: print_deriv ¼ Nag_D_NoPrint or Nag_D_Print.

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.13

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If outfile½0� ¼ ‘n0’ then the stdout
stream is used.

deriv_want – Nag_DWantType Default ¼ Nag_Grad_HessFull

On entry: specifies which derivatives nag_opt_estimate_deriv (e04xac) should estimate. The following
values are available:

Nag_Grad_HessFull Estimate the gradient and full Hessian, with the user supplying the objective
function via objfun.

Nag_Grad_HessDiag Estimate the gradient and the Hessian diagonal values, with the user supplying
the objective function via objfun.

Nag_HessFull Estimate the full Hessian, with the user supplying the objective function and
gradients via objfun.

Constraint: deriv_want ¼ Nag_Grad_HessFull, Nag_Grad_HessDiag or Nag_HessFull.

use_hfwd_init – Nag_Boolean Default ¼ NagFalse

On entry: if use_hfwd_init ¼ NagFalse, then nag_opt_estimate_deriv (e04xac) ignores any values
supplied on entry in h_forward, and computes the initial trial intervals itself. If
use_hfwd_init ¼ NagTrue, then nag_opt_estimate_deriv (e04xac) uses the forward difference interval
provided by the user in h_forward½j� 1� as the initial trial interval for computing the appropriate partial
derivative to the jth variable, j ¼ 1; 2; . . . ; n; however, if h_forward½j� 1� � 0:0 for some j, the initial trial
interval for the jth variable is computed by nag_opt_estimate_deriv (e04xac).

f_prec – double Default ¼ �0:9

On entry: specifies eR, which is intended to measure the accuracy with which the problem function F can
be computed. The value of f_prec should reflect the relative precision of 1þ F xð Þj j, i.e., acts as a relative
precision when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þj j is
typically of order 1000 and the first six significant figures are known to be correct, an appropriate value of

f_prec would be 10�6. The default value of �0:9 will be appropriate for most simple functions that are
computed with full accuracy

A discussion of eR is given in Chapter 8 of Gill et al. (1981). If the user provides a value of f_prec which
nag_opt_estimate_deriv (e04xac) determines to be either too small or too large , the default value will be
used instead and a warning will be output if optional parameter print_deriv ¼ Nag_D_Print. The value
actually used is returned in f_prec_used.

Constraint: f_prec > 0.

f_prec_used – double r

On exit: if fail.code ¼ NE_NOERROR or NW_DERIV_INFO, or if nf > 1 and
fail.code ¼ NE_USER_STOP, then f_prec_used contains the value of eR used by
nag_opt_estimate_deriv (e04xac). If the user supplies a value for f_prec and nag_opt_estimate_deriv
(e04xac) considers that the value supplied is neither too large nor too small, then this value will be

returned in f_prec_used; otherwise f_prec_used will contain the default value, �0:9.

nf – double r

On exit: the number of times the objective function has been evaluated (i.e., number of calls of objfun).

11 Example 2 (EX2)

Example 2 (EX2) solves the same problem as Example 1 (EX1), described in Section 9, but shows the use
of certain optional parameters. The same objfun is used as in Section 9 and the derivatives are estimated
at the same point. The options structure is declared and initialized by nag_opt_init (e04xxc). Two options
are set to suppress all printout from nag_opt_estimate_deriv (e04xac): list is set to Nag_False and

e04xac NAG C Library Manual

e04xac.14 [NP3660/8]

print_deriv ¼ Nag_D_NoPrint. deriv_want ¼ Nag_Grad_HessDiag and nag_opt_estimate_deriv
(e04xac) is called. The returned function value and estimated derivative values are printed out and
deriv_want is reset to deriv_want ¼ Nag_HessFull before nag_opt_estimate_deriv (e04xac) is called
again. On return, the computed function value and gradient, and estimated Hessian, are printed out.

See Section 9 for the example program.

e04 – Minimizing or Maximizing a Function e04xac

[NP3660/8] e04xac.15 (last)

	e04xac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	x
	objfun
	n
	x
	objf
	g
	comm
	flag
	first
	nf
	user
	iuser
	p

	objf
	g
	h_forward
	h_central
	h
	tdh
	deriv_info
	options
	comm
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_H_FORWARD_NULL
	NE_INT_ARG_LT
	NE_INVALID_REAL_RANGE_F
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OPT_NOT_INIT
	NE_USER_STOP
	NW_DERIV_INFO

	7 Accuracy
	8 Further Comments
	8.1 Diagnostic Information
	8.2 Timing

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Optional Parameters
	10.1 Optional Parameter Checklist and Default Values
	10.2 Description of the Optional Arguments
	list
	print_deriv
	outfile
	deriv_want
	use_hfwd_init
	f_prec
	f_prec_used
	nf

	11 Example 2 (EX2)

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

